Navigate Up
Sign In
BCMBJHU SOM

Faculty & Research

​​​
​​​

Sean Taverna

Department Affiliation Primary: Pharmacology
Secondary: Medicine
RankAssociate Professor
Phone Numbers410-502-0790
Lab: 410-502-1903
Emailstaverna@jhmi.edu
School of Medicine Address855 N. Wolfe Street
Rm 575, John G. Rangos Sr. Bldg.
Baltimore MD 21205
Link to Lab Homepage
Sean Taverna

Research Topic: Histone and chromatin modifications, epigenetics and gene function, identification of histone binding modules, and small RNA directed gene silencing.

Eukaryotic cells package their genomes in the form of chromatin, which is comprised of histone proteins and DNA. Modification of chromatin by chemical marks such as methylation and acetylation affects how cellular machineries interpret the genome. The Taverna laboratory studies how histone marks contribute to an “epigenetic/histone code” that may dictate chromatin-templated functions like transcriptional activation and gene silencing, as well as how these On/Off states are inherited/ propagated. For example, transcription-modulating protein complexes with PHD finger motifs (methyl lysine “readers”) or Bromodomains (acetyl lysine “readers”) often have enzymatic activities that “write” these same histone marks. To explore these connections we use biochemistry and cell biology in a variety of model organisms ranging from mammals to yeast and ciliates. The lab also investigates links between small RNAs and histone marks involved in gene silencing. Importantly, many histone binding proteins have clear links to human disease, notably leukemia and other cancers.

Publications:

Papazyan R, Taverna SD. Separation and purification of multiply acetylated proteins using cation-exchange chromatography. Methods Mol Biol. 981:103-13, 2013.
PubMed Reference

Byrum SD, Raman A, Taverna SD, Tackett AJ. ChAP-MS; a method for identification of proteins and histone posttranslational modifications at a single genomic locus.  Cell Rep. 2(1):198-205, 2012.
PubMed Reference

Taverna SD, Cole PA. Drug discovery: Reader's block. Nature. 468(7327):1050-1, 2010.
PubMed Reference

Taverna SD, Ueberheide BM, Liu Y, Tackett AJ, Diaz R, Shabanowitz J, Chait BT, Hunt DF and Allis CD. Long-distance combinatorial linkage between methylation and acetylation on H3 N-termini. Proc. Natl. Acad. Sci. USA. 104:2086-2091, 2007.
PubMed Reference

Taverna SD, Li H, Ruthenburg AJ, Allis CD and Patel DJ. How chromatin binding modules interpret histone modifications. Nat. Struct. Mol. Bio. 14:1025-1040, 2007.
PubMed Reference

Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, and Allis .D. Yng1 PHD finger binding to histone H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Molecular Cell. 24:785-796, 2006.
PubMed Reference​

Taverna S.D., Coyne RS, and Allis CD. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110:701-711, 2002.
PubMed Reference​

Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, and Khorasanizadeh S. (2001) Specificity of the HP1 chromodomain for the methylated N-terminus of histone H3. EMBO J. 20:5232-5241, 2001.
PubMed Reference
​​​​​​​