Navigate Up
Sign In

Faculty & Research


Rong Li

Department Affiliation Primary: Cell Biology
RankBloomberg Distinguished Professor
Phone Numbers410-955-9938
School of Medicine Address

Link to Lab Homepage
Rong Li

Research Topic: Cellular Dynamics in space, time, and adaptation

​The goal of our research is to understand how eukaryotic cells polarize, divide, move, and vary their genomes to adapt to the changing environment.  We strive for integrated analyses on the systems level that combines whole-cell quantitative observation and mathematical modeling with cutting-edge molecular genetics approaches. We are intrigued about how cells generate patterns through self-organization in response to environmental signals, accomplish division or motility through coordinated structural rearrangements and force production, and, when challenged with hostile environments or genetic perturbations, evolve innovative solutions to maintain vitality and functionality.  In addition to the goal of identifying fundamental principles, we actively seek opportunities to apply basic-research insights to the improvement of human health.  Our research areas include:    

I.  Cell polarization and segregation of aging determinants

Cell polarity is the simplest form of whole-cell pattern beyond spherical symmetry, from which more complex developmental and multicellular patterns emerge.  Our ongoing work attempts to explain how molecular components of distinct functional modules interact in time and space to establish cell polarity that is robust to noise but sensitive to physiological inputs.  A functional consequence of cell polarity in the unicellular organism, the budding yeast, is asymmetric segregation of aging determinants such that cell division generates a young cell with renewed replicative potential from an aged mother cell.  We use live-cell imaging to observe the generation and transmission of recessive determinants that are beneficial but poorly renewed, as well as dominant determinants resulting from accumulated damages.  We use these data to build models that not only explain the finite replicative life span but also predict its modification by environmental or genetic changes.  

II. Spindle positioning and asymmetric meiotic cell division

The development of mammalian organisms starts with two rounds of asymmetric meiotic division of the oocyte.  Our recent work has uncovered novel roles of the actin cytoskeleton in the acentric positioning of the meiotic spindle and of the chromatin in setting up cortical polarity required for extrusion of the polar body.  Our ongoing study is designed to elucidate the mechanism of the chromatin-based signal, its transmission through the cytoplasm to the cortex, and consequent changes in cytoskeletal dynamics to produce the forces that drive oocyte symmetry breaking with the potential to impact early zygotic development.

III. Motility of differentiated mammalian cells in diverse environments

Cell motility is crucial for the development and physiology of diverse cell types and tissues, yet mechanistic insights have come mainly from transformed cell lines moving on 2D surfaces.  An emerging line of research in our lab is to study the motility of cells of well-defined tissue origins in mechanical and geometrical environments that mimic physiological conditions.  We isolate primary cells from genetically modified animals and then apply high-resolution biophysical techniques to observe and parameterize their motility in vitro in engineered environments that provide tissue-mimetic tests of environmental inputs.  Our ultimate goals are to identify context-dependent design principles in the cytoskeletal machine that drives cell movement and to use this insight to develop cancer-specific therapies against tumor spreading and metastasis.

IV. Cellular adaptation through variation of chromosome copy numbers

Aneuploidy, the state of having unequal numbers of different chromosomes, is a frequent genetic alteration due to errors in mitosis and meiosis and can drive rapid adaptive changes in unicellular organisms and cancer.  Our recent work has demonstrated dramatic ways in which aneuploidy alters gene expression and cell behavior.  We are currently investigating how aneuploidy affects the epigenetic state of cells and which cellular pathways may be particularly sensitive to modification by an unbalanced chromosome dosage.  Metazoans have evolved powerful surveillance mechanisms to prevent aneuploidy, most notably the p53 system that is so often mutated in cancer cells.  Our ongoing study aims to uncover how p53 senses numerical abnormalities of the genome in mammalian somatic cells.  We are also exploring an evolution-based strategy for eradicating karyotypically heterogeneous cell population, with the goal of using it to design combinatorial drug therapies for the treatment of cancer and certain infectious diseases.

V. Epithelial morphogenesis and polycystic kidney disease

Cells that constitute mammalian epithelial tissues have the ability to detect and adjust to significant environmental stress to maintain their proper differentiated state and multicellular organization.  In polarized renal epithelial cells, a mechanosenory pathway is mediated by a transmembrane complex, consisting of polycystin-1 and polycystin-2 proteins.  Mutations in these proteins result in autosomal dominant polycystic kidney disease (ADPKD), a highly prevalent human hereditary disease. We are using a combination of mouse genetics and live-cell analysis to understand how loss of polycystin function alters the growth control and morphogenetic fate of epithelial cells in ADPKD.


​Zhu J, Heinecke D, Mulla W, Bradford WD, Rubinstein B, Box A, Haug JS and Li R.  Single-cell based quantitative assay of chromosome transmission fidelity. G3. 2015;5:1043-56

Chen G, Mulla WA, Kucharavy A, Tsai HJ, Rubinstein B, Conkright J, McCroskey S, Bradford WD, Weems L, Haug JS, Seidel CW, Berman J, Li R. Targeting the Adaptability of Heterogeneous Aneuploids. Cell. 2015;160:771-784. 

Suraneni P, Fogelson B, Rubinstein B, Noguera P, Volkmann N, Hanein D, Mogilner A, Li R. A Mechanism of Leading Edge Protrusion in the absence of Arp2/3 Complex. Mol Biol Cell. 2015;26:901-12. 

Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A, Ross RT, McClain M, Li R. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell. 2014;159:530-542. 

Smith SE, Rubinstein B, Mendes Pinto I, Slaughter BD, Unruh JR, Li R. Independence of symmetry breaking on Bem1-mediated autocatalytic activation of Cdc42.  J Cell Biol. 2013;202:1091-1106. 

Li R. The art of choreographing asymmetric cell division. Dev Cell. 2013;25:439-450. 

Yi K, Rubinstein B, Unruh JR, Guo F, Slaughter BD, Li R. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J Cell Biol. 2013;200:567-576. 

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol.2013;14:141-152. 

Slaughter BD, Unruh JR, Das A, Smith SE, Rubinstein B, Li R. Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking. Nat Commun. 2013;4:1380. 

Pinto IM, Rubinstein B, Kucharavy A, Unruh J, Li R. Actin Depolymerization Drives Actomyosin Ring Contraction during Budding Yeast Cytokinesis. Dev Cell. 2012;22:1247-1260. 

Chen G, Bradford WD, Seidel CW, Li R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature. 2012;482:246-250. 

Das A, Slaughter BD, Unruh JR, Bradford WD, Alexander R, Rubinstein B, Li R. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat Cell Biol. 2012;14:304-310. 

Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol. 2012;197:239-251. 

Zhu J, Pavelka N, Bradford WD, Rancati G, Li R. Karyotypic Determinants of Chromosome Instability in Aneuploid Budding Yeast. PLoS Genet. 2012;8:e1002719. 

Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R. Motility and segregation of hsp104-associated protein aggregates in budding yeast. Cell. 2011;147:1186-1196. 

Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol. 2011;13:1252-1258. 

Gao JT, Guimera R, Li H, Pinto IM, Sales-Pardo M, Wai SC, Rubinstein B, Li R. Modular coherence of protein dynamics in yeast cell polarity system. Proc Natl Acad Sci U S A. 2011;108:7647-7652. 

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature. 2010;468:321-325. 

Xia S, Li X, Johnson T, Seidel C, Wallace DP, Li R. Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development. 2010;137:1075-1084. 

Slaughter BD, Das A, Schwartz JW, Rubinstein B, Li R. Dual modes of cdc42 recycling fine-tune polarized morphogenesis. Dev Cell. 2009;17:823-835.  

Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, Staehling-Hampton K, Seidel CW, Li R. Aneuploidy Underlies Rapid Adaptive Evolution of Yeast Cells Deprived of a Conserved Cytokinesis Motor. Cell. 2008;135:879-893.