Biological Chemistry

Gerald Hart

Gerald Hart

In the early 1980’s, the Hart laboratory discovered a new type of protein modification (O-GlcNAc), present on proteins within the nucleus and cytoplasm of cells, in which a glucose-derived sugar (N-acetylglucosamine; simply glucose with a nitrogen and an acetyl group attached) is attached to serine or threonine side chains of proteins, exactly analogous to phosphorylation.

Stephen Gould

Stephen Gould

Animal cells secrete small vesicles (~50-250 nm diameter) that have the same topology as the cell. These vesicles, known as exosomes and microvesicles (EMVs), can be taken up by neighboring cells, completing a pathway of intercellular vesicle traffic. Our laboratory studies the molecular mechanisms of EMV biogenesis and uptake, and their contributions to cell polarity, cell:cell interactions, and intercellular signaling.

Ryuya Fukunaga

Ryuya Fukunaga

Overview The Fukunaga lab investigates the mechanism and biology of small silencing RNAs. We try to understand how small silencing RNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), are produced and how they function. We use a combination of biochemistry, biophysics, fly genetics, cell culture, X-ray crystallography and next-generation sequencing, in order to understand the biogenesis and function of small silencing RNAs from the atomic to the organismal level. 1. miRNA miRNAs are 21-24 nt long RNA.

Robert N. Cole

Robert N. Cole

Michael Caterina

Michael Caterina

My lab studies mechanisms underlying pain sensation, using a combination of mouse genetics and a range of in vitro and in vivo assays that include behavior, electrophysiology, imaging, neuroanatomy, and biochemistry.

Erin Goley

Erin Goley

The bacterial cell, once viewed as lacking internal organization, is in fact exquisitely structured at the subcellular level, and this spatial organization is critical for cellular survival and reproduction. As in eukaryotes, prokaryotic cell shape and internal structure are defined and dynamically remodeled by cytoskeletal elements. These proteins play critical roles in essential processes like cytokinesis and chromosome segregation, making them attractive targets for the development of novel antibiotics.

Pages