Netzahualcóyotl Arroyo Currás

Netzahualcóyotl Arroyo Currás

Assistant Professor
Primary Appointment: 
Pharmacology and Molecular Sciences

725 North Wolfe Street
316 Hunterian Building
Baltimore, MD 21205

Research topic: 

Pharmacokinetics, Biosensors, In-vivo sensing

The ability to monitor arbitrary molecules in situ in the body as we undergo normal daily routines could empower us to make educated decisions regarding our diet, fitness, medical treatments and overall health status. Our laboratory pursues this vision by developing biology-inspired electrochemical sensors that support real-time, continuous measurements of a wide range of physiologically-important molecules in vivo. Our research blends chemistry with engineering, biophysics and pharmacology to, for example, study factors involved in the recognition of small-molecule targets by nucleic acid- or peptide-based receptors, develop metabolism-responsive drug delivery approaches, and produce diagnostic platforms for personalized health care. We pursue these goals in an environment that nurtures creativity, inclusivity of ideas, and innovation.

Selected Publications: 

Post-Doctoral Work

Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data. Curtis, S.D.; Ploense, K.L.; Kurnik, M.; Ortega, G.; Parolo, C.; Kippin, T.E.; Plaxco, K.W.; Arroyo-Currás, N.; Anal. Chem., 2019, DOI: 10.1021/acs.analchem.9b02553

Ultra-high-precision, in-vivo pharmacokinetic measurements highlight the need for and a route towards more highly personalized medicine. Vieira, P.A.; Shin, C.; Arroyo-Curras, N.; Ortega, G.; Li, W.; Keller, A.A.; Plaxco, K.W.; Kippin, T.E.; Front. Mol. Biosci., 2019, DOI: 10.3389/fmolb.2019.00069

Seconds-Resolved Pharmacokinetic Measurements of the Chemotherapeutic Irinotecan In Situ in the Living Body. Idili, A.; Arroyo-Curras, N.; Ploense, K.L.; Csordas, A.T.; Kuwahara, M; Kippin, T.E.; Plaxco, K.W.; Chem. Sci., 2019, DOI: 10.1039/c9sc01495k

Fluorescence-Based Observation of Transient Electrochemical and Electrokinetic Effects at Nanoconfined Bipolar Electrodes. Scida, K.; Eden, A.; Arroyo-Curras, N.; MacKenzie, S; Satik, Y.; Meinhart, C. D.; Eijkel, J. C. T.; Pennathur, S.; ACS Appl. Mater. Interfaces, 2019, DOI: 10.1021/acsami.9b01339

Modeling Faradaic Reactions and Electrokinetic Phenomena at a Nanochannel-Confined Bipolar Electrode. Eden, A.; Scida, K.; Arroyo-Curras, N.; Eijkel, J. C. T.; Meinhart, C. D.; Pennathur, S.; J. Phys. Chem. C, 2019, DOI: 10.1021/acs.jpcc.8b10473

High-precision electrochemical measurements of the guanine-, mismatch- and length-dependence of electron transfer from electrode-bound DNA are consistent with a contact-mediated mechanism. Dauphin-Ducharme, P.; Arroyo-Currás, N.; Plaxco, K.W.; J. Am. Chem. Soc., 2019, DOI: 10.1021/jacs.8b11341

Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors. Arroyo-Curras, N.; Dauphin-Ducharme, P.; Ortega, G.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; ACS Sensors, 2017, DOI: 10.1021/acssensors.7b00787. [Link]

High Surface Area Electrodes Generated via Electrochemical Roughening Improve the Signaling of Electrochemical Aptamer-based Biosensors. Arroyo-Curras, N.; Scida, K.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; Anal. Chem., 2017, DOI: 10.1021/acs.analchem.7b02830. [Link]

A Simulation-Based Approach to Determining Electron Transfer Rates using Square-Wave Voltammetry. Dauphin-Ducharme, P.; Arroyo-Currás, N.; Kurnik, M.; Ortega, G.; Li, H.; Plaxco, K. W.; Langmuir, 2017, DOI: 10.1021/acs.langmuir.7b00359.[Link]

A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors. Li, H.; Dauphin-Ducharme, P.; Arroyo-Currás, N.; Tran, C. H.; Vieira, P. A.; Li, S.; Shin, C.; Somerson, J.; Kippin, T. E.; Plaxco, K. W.; Angew. Chem. Int. Ed. Engl., 2017, DOI:10.1002/anie.201700748.[Link]

Real-time measurement of small molecules directly in awake, ambulatory animals. Arroyo-Currás, N.; Somerson, J.; Vieira, P. A.; Ploense, K. L.; Kippin, T. E.; Plaxco, K. W.; PNAS, 2017, DOI: 10.1073/pnas.1613458114.[Link]

Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood. Li, H.; Arroyo-Curras, N.; Kang, D.; Ricci, F.; Plaxco, K.W.; JACS, 2016, DOI: 10.1021/jacs.6b08671.[Link]

Transdermal analyte sensing device. Lansdorp, B.; Strenk, E.; Arroyo-Currás, N.; Imberman, D. U.S. Patent US20160338627 A1 (2016).[Link]

Graduate School

Nanometer Scale Scanning Electrochemical Microscopy Instrumentation. Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K.C.; Bard, A.J.; Anal. Chem., 2016, DOI:10.1021/acs.analchem.6b03024.[Link]

Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy. Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K.C.; Bard, A.J.; Anal. Chem., 2016, DOI:10.1021/jacs.6b03980.[Link]

Chemical Characteristics of the Products of the Complexation Reaction Between Copper(II) and a Tetra-Aza Macrocycle in the Presence of Chloride Ions. Lincoln, K. M.; Arroyo-Currás, N.; Johnston, H. M.; Hayden, T. D.; Pierce, B. S.; Bhuvanesh, N.; Green, K. N.; J. Coord. Chem., 2015, DOI:10.1080/00958972.2015.1068935.[Link]

A Redox Flow Battery that Uses Complexes of Cobalt and Iron with Amino-Alcohol Ligands in Alkaline Electrolytes to Store Electrical Energy. Bard, A. J.; Arroyo-Currás, N.; U.S. Patent, PCT Int. App. WO 2015054260 A2 (2015).[Link]

Iridium Oxidation as Observed by Surface Interrogation Scanning Electrochemical Microscopy. Arroyo-Currás, N.; Bard, A. J.; J. Phys. Chem. C, 2015, 119, 8147-8154.[Link]

Development of an Alkaline Redox Flow Battery: From Fundamentals to Benchtop Prototype. Arroyo-Currás, N.; Ph.D. Dissertation, The University of Texas at Austin, June 2015.[Link]

An Alkaline Flow Battery Based on the Coordination Chemistry of Iron and Cobalt. Arroyo-Currás, N.; Hall, J.W.; Dick, J.E.; Jones, R.A.; Bard, A.J.; J. Electrochem. Soc., 2015, 162, A378-A383.[PDF]

Biodegradable Electroactive Polymers for Electrochemically-Triggered Drug Delivery. Hardy, J.G.; Mouser, D.J.; Arroyo-Currás, N.; Geissler, S.; Chow, J.K.; Nguy, L.; Kim, J.M.; Schmidt, C.E.; J. Mater. Chem. B, 2014, 2, 6809-6822.[PDF]

Electrochemical Monitoring of TiO2 Atomic Layer Deposition by Chronoamperometry and Scanning Electrochemical Microscopy. Satpati, A.K.; Arroyo-Currás, N.; Li, J.; Yu, E.T.; Bard, A.J.; Chem. Mater., 2013, 25, 4165-4172.[PDF]

Achieving Nanometer Scale Tip-to-Substrate Gaps with Micrometer-Size Ultramicroelectrodes in Scanning Electrochemical Microscopy. Shen, M.; Arroyo-Currás, N.; Bard, A.J.; Anal. Chem., 2011, 83, 9082-9085.[PDF]