Netzahualcóyotl Arroyo Currás

Assistant Professor

725 North Wolfe Street
316 Hunterian Building
Baltimore, MD 21205


Pharmacology and Molecular Sciences

The ability to monitor arbitrary molecules in situ in the body as we undergo normal daily routines could empower us to make educated decisions regarding our diet, fitness, medical treatments and overall health status. Our laboratory pursues this vision by developing biology-inspired electrochemical sensors that support real-time, continuous measurements of a wide range of physiologically-important molecules in vivo. Our research blends chemistry with engineering, biophysics and pharmacology to, for example, study factors involved in the recognition of small-molecule targets by nucleic acid- or peptide-based receptors, develop metabolism-responsive drug delivery approaches, and produce diagnostic platforms for personalized health care. We pursue these goals in an environment that nurtures creativity, inclusivity of ideas, and innovation.




2022

Optimization of Vancomycin Aptamer Sequence Length Increases the Sensitivity of Electrochemical, Aptamer-Based Sensors In Vivo. Shaver, A.; Mahlum, J.D.; Scida, K.; Johnston, M.L.; Aller Pellitero, M.; Wu, Y.; Carr, G.V.; Arroyo-Currás, N., ACS Sens., 2022,DOI:10.1021/acssensors.2c01910

Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Clark, V.; Waters, K.; Orsburn, B.; Bumpus, N.N.; Kundu, N.; Sczepanski, J.T.; Ray, P.; Arroyo-Currás, N.; Angew. Chem. Int. Ed.2022, DOI: 10.1002/anie.202211292

Antibody–Invertase Fusion Protein Enables Quantitative Detection of SARS-CoV-2 Antibodies Using Widely Available Glucometers. Leonard, E. K.; Pellitero, M.A.; Juelg, B.; Spangler, J.B.; Arroyo-Currás, N.; J. Am. Chem. Soc.2022, DOI: 10.1021/jacs.2c02537

Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; Nie, Y.; Laffel, L. M.; Doyle, F.J. III; Patti, M-E.; Dassau, E.; Wang, J.; Arroyo-Currás, N.; Anal. Chem.2022, DOI: 10.1021/acs.analchem.2c00829

Study of Surface Modification Strategies to Create Glassy Carbon‑supported, Aptamer‑based Sensors for Continuous Molecular Monitoring. Pellitero, M. A.; Arroyo-Currás, N.; Anal. Bioanal. Chem.2022, DOI: 10.1007/s00216-022-04015-5

Electrochemical Aptamer-Based Sensors: A Platform Approach to High-Frequency Molecular Monitoring In Situ in the Living Body. Dauphin-Ducharme, P.; Ploense, K.L.; Arroyo-Currás, N.; Kippin, T.E.; Plaxco, K.W.; In Biomedical Engineering Technologies: Volume 1, Ossandon, M. R.;  Baker, H.; Rasooly, A., Eds. Springer US: New York, NY, 2022; 479-492. DOI: 10.1007/978-1-0716-1803-5_25

 

2021

The Challenge of Long-term Stability for Nucleic Acid-based Electrochemical Sensors. Shaver, A.; Arroyo-Curras, N.; Curr. Opin. Electrochem.2021, DOI: 10.1016/j.coelec.2021.100902

Nanoscale Bioreceptor Layers Comprising Carboxylated Polythiophene for Organic Electrochemical Transistor-Based Biosensors. Song, Y.; Lamberty, Z.D.; Liang, J.; Pellitero, M.A.; Wagner, J.S.; Jumai’an, E.; Bevan, M.A.; Frechette, J.; Arroyo-Currás, N.; Katz, H. E.; ACS Appl. Nano Mater.2021, DOI:10.1021/acsanm.1c02949

Chemical Equilibrium-Based Mechanism for the Electrochemical Reduction of DNA-Bound Methylene Blue Explains Double Redox Waves in Voltammetry. Mahlum, J.D.; Pellitero, M.A.; Arroyo-Currás, N; J. Phys. Chem. C2021, DOI: 10.1021/acs.jpcc.1c00336

Nuclease Hydrolysis Does Not Drive the Rapid Signaling Decay of DNA Aptamer-Based Electrochemical Sensors in Biological Fluids.Shaver, A.; Kundu, N.; Young, B.E.; Vieira, P.A.; Sczepanski, J.T.; Arroyo-Currás, N; Langmuir2021, DOI: 10.1021/acs.langmuir.1c00166

Interrogation of Electrochemical Aptamer-Based Sensors via Peak-to-Peak Separation in Cyclic Voltammetry Improves the Temporal Stability and Batch-to-Batch Variability in Biological Fluids. Pellitero, M.A.; Curtis, S.D.; Arroyo-Curras, N.; ACS Sensors2021, DOI: 10.1021/acssensors.0c02455

Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. Zakashansky, J.A.; Imamura, A.H.; Salgado, D.F.; Romero Mercieca, H.; Aguas, R.F.L.; Lao, A.M.; Pariser, J.; Arroyo-Curras, N.; Khine, M.; Anal. Methods2021, DOI: 10.1039/D1AY00041A

Advances in Nucleic Acid Architectures for Electrochemical Sensing. Wu, Y.; Arroyo-Curras, N.; Curr. Opin. Electrochem.2021, DOI: 10.1016/j.coelec.2021.100695

 

2020

E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Parolo, C.; Greenwood, A. S.; Ogden, N. E.; Kang, D.; Hawes, C.; Ortega, G.; Arroyo-Currás, N.; Plaxco, K. W.; Nature Microsyst. Nanoeng., 2020, DOI: 10.1038/s41378-019-0119-5

Alkanethiol Monolayer End Groups Affect the Long-term Operational Stability and Signaling of Electrochemical, Aptamer-based Sensors in Biological Fluids. Shaver, A; Curtis, S.; Arroyo-Currás, N.; ACS Appl. Mater. Interfaces, 2020, DOI: 10.1021/acsami.9b22385

From the Beaker to the Body: Translational Challenges for Electrochemical, Aptamer-Based Sensors. Arroyo-Currás, N.; Dauphin-Ducharme, P.; Scida, K.; Chavez, J.L.; Anal. Methods, 2020, DOI: 10.1039/D0AY00026D 2019

 

2019

Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review. Pellitero, M. A.; Shaver, A.; Arroyo-Currás, N.; J. Electrochem. Soc., 2019, DOI: 10.1149/2.0292003JES

Discharging Behavior of Confined Bipolar Electrodes: Coupled Electrokinetic and Electrochemical Dynamics. Eden, A.; Scida, K.; Arroyo-Currás, N.; Eijkel, J.C.T.; Meinhart, C.D.; Pennathur, S.; Electrochim. Acta, 2019, DOI: 10.1016/j.electacta.2019.135275

Electrochemical Aptamer-based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-controlled Drug Delivery. Dauphin-Ducharme, P.; Yang, K.; Arroyo-Curras, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W.; ACA. Sens., 2019, DOI: 10.1021/acssensors.9b01616

Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data. Curtis, S.D.; Ploense, K.L.; Kurnik, M.; Ortega, G.; Parolo, C.; Kippin, T.E.; Plaxco, K.W.; Arroyo-Currás, N.; Anal. Chem., 2019, DOI: 10.1021/acs.analchem.9b02553

Ultra-high-precision, in-vivo pharmacokinetic measurements highlight the need for and a route towards more highly personalized medicine. Vieira, P.A.; Shin, C.; Arroyo-Curras, N.; Ortega, G.; Li, W.; Keller, A.A.; Plaxco, K.W.; Kippin, T.E.; Front. Mol. Biosci., 2019, DOI: 10.3389/fmolb.2019.00069

Seconds-Resolved Pharmacokinetic Measurements of the Chemotherapeutic Irinotecan In Situ in the Living Body. Idili, A.; Arroyo-Curras, N.; Ploense, K.L.; Csordas, A.T.; Kuwahara, M; Kippin, T.E.; Plaxco, K.W.; Chem. Sci., 2019, DOI: 10.1039/c9sc01495k

Fluorescence-Based Observation of Transient Electrochemical and Electrokinetic Effects at Nanoconfined Bipolar Electrodes. Scida, K.; Eden, A.; Arroyo-Curras, N.; MacKenzie, S; Satik, Y.; Meinhart, C. D.; Eijkel, J. C. T.; Pennathur, S.; ACS Appl. Mater. Interfaces, 2019, DOI: 10.1021/acsami.9b01339

Modeling Faradaic Reactions and Electrokinetic Phenomena at a Nanochannel-Confined Bipolar Electrode. Eden, A.; Scida, K.; Arroyo-Curras, N.; Eijkel, J. C. T.; Meinhart, C. D.; Pennathur, S.; J. Phys. Chem. C, 2019, DOI: 10.1021/acs.jpcc.8b10473

High-precision electrochemical measurements of the guanine-, mismatch- and length-dependence of electron transfer from electrode-bound DNA are consistent with a contact-mediated mechanism. Dauphin-Ducharme, P.; Arroyo-Currás, N.; Plaxco, K.W.; J. Am. Chem. Soc., 2019, DOI: 10.1021/jacs.8b11341