RNA is typically understood as an intermediary molecule between DNA and protein. But, many noncoding RNAs, as well as the noncoding regions of messenger RNA, are increasingly appreciated as important regulators of gene expression and cellular functions. The forefront...
Single cell gene molecular profiling has demonstrated that cell classification requires more than a simple collection of markers. Current approaches do not account for the dynamic nature of cell states and inherent variation in cell types. This is especially...
Understanding the brain using evolution, viruses, and barcode sequencing. Our research aims to understand the structure and function of the brain. To do so, we take a comparative approach and develop molecular, viral, and sequencing technologies to measure neuronal...
Research in my laboratory is focused on understanding the molecular mechanisms of multi-subunit assemblies involved in synaptic communication. We are particularly interested in elucidating the structural thermodynamics that govern subunit assembly, ligand binding, and allosteric control of neurotransmitter receptors....
Understanding how the information in the genome is utilized is one of the central questions in modern biology. It has become clear that a critical level of gene regulation occurs through the chemical modification of both the DNA itself...
Non-ribosomal peptide synthetases (NRPSs) are large enzymatic systems responsible for the biosynthesis of a wealth of secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. To synthesize all of...
The goal of my research program is to answer a fundamental biological question: how is the genome properly interpreted to coordinate the diversity of cell types observed during neuronal development? We are focused on the acquisition of specific cellular...
Chemotaxis plays a key role in immune response, wound healing, angiogenesis, and embryogenesis as well as mediating cancer metastasis. Research in Dictyostelium discoideum has shown that chemoattractants are sensed by GPCRs and rapidly trigger a complex network of signaling...
A fundamental property of living cells is their extraordinary ability to sense and respond to a changing environment. In higher eukaryotes, malfunctioning of signaling networks has many devastating consequences such as cancer, diabetes or autoimmunity. Such consequences arise from...