Image of Michael Piacentino

Piacentino, Michael

Epithelial-to-mesenchymal transition (EMT) is a cellular lifestyle change that produces highly invasive cells that can migrate long distances in the body. These processes are critical for normal embryonic development but are often reactivated in disease states such as cancer...

Read More

Andrew Ewald

Background and Summary: Epithelial cells in a tissue live a crowded life connected to, and interacting with, other cell types, the extracellular matrix, and diverse signaling molecules. A fundamental question in biology is: how do the constituent cells of an...

Read More

Alex Kolodkin

Our research is focused on understanding how neuronal connectivity is established during development.  Our work investigates the function of extrinsic guidance cues and their receptors on axonal guidance, dendritic morphology, and synapse formation and function.  For several years we...

Read More
Photo of Robert Cole

Robert N. Cole

Our research is highly collaborative and focuses on developing, optimizing and applying innovative mass spectrometry strategies to reveal the proteins, their modifications, interactomes and adductomes in modulating or monitoring human health and disease. Ongoing research: Albumin Adductome: Air pollution...

Read More

Peter Devreotes

Chemotaxis plays a key role in immune response, wound healing, angiogenesis, and embryogenesis as well as mediating cancer metastasis. Research in Dictyostelium discoideum has shown that chemoattractants are sensed by GPCRs and rapidly trigger a complex network of signaling...

Read More

Ronald Schnaar

Our work bridges from biochemical to preclinical translational studies to harness the power of glycobiology for therapeutic benefits. All cells are endowed with a diverse coat of glycans, their “glycocalyx,” which represents the face of the cell to the...

Read More
Image of Shigeki Watanabe

Shigeki Watanabe

My lab studies the cellular and molecular basis of synaptic transmission and plasticity. Neuronal signaling events at synapses determine circuit responses and result in specific behavioral outputs. This signaling is dynamic – modulated by synapse activity history and perceived...

Read More

Deborah Andrew

We study how epithelial tubular organs – which are essential to life in all multicellular organisms – form and specialize. Using the simple unbranched tubes of the Drosophila salivary gland and the beautifully branched tubular network of the Drosophila...

Read More

Ulrich Mueller

MECHANOTRANSDUCTION AND AUDITORY PERCEPTION Hair cells in the inner ear are mechanosensors for the perception of sound and head movements. Sound signals directly activate mechanically gated ion channels in hair cells, leading to hair cell depolarization and the release...

Read More