Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...
Understanding how the information in the genome is utilized is one of the central questions in modern biology. It has become clear that a critical level of gene regulation occurs through the chemical modification of both the DNA itself...
Non-ribosomal peptide synthetases (NRPSs) are large enzymatic systems responsible for the biosynthesis of a wealth of secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. To synthesize all of...
Research Focus Our research focuses on “synthetic cell biology” to dissect and reconstitute intricate signaling networks. In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as a symmetry breaking process), as well as spatio-temporally dynamic...
The research group is a laboratory focused on medicinal chemistry, primarily addressing diseases of neurodevelopment such as schizophrenia. Biological activity and structure-based drug design are used to drive chemistry target selection, and we are developing synthetic methods to efficiently prepare...
Research Interests: My laboratory’s research is focused on understanding how multi-subunit assemblies use ATP for overcoming topological challenges within the chromosome and controlling the flow of genetic information. We are particularly interested in developing mechanistic models that explain how...
Multi-cellular living organisms grow from single cells into multicellular, complex systems composed of highly diverse cell-types organized into tissues, which in turn form organs and organ systems. To organize and maintain this complex architecture, the organism must undergo constant...
The central theme of our research is chemotherapy of malaria and African sleeping sickness. On a molecular basis, we are interested in understanding the mechanism of action for existing agents, and in identifying vulnerable targets for much-needed new chemotherapy....
Research Interests: We are interested in understanding mechanisms that allow biological stress-sensors to detect danger signals and initiate highly coordinated coping-responses by assembling into higher order molecular assemblies. Innate immunity is the first line of defense against invading pathogens...