Photo of Jiou Wang

Jiou Wang

We are interested in the biological basis for protein and RNA homeostasis in neurodegeneration. We hope to solve problems that not only have biological significance but also have important implications for understanding and treating disease. Discovering key regulators of...

Read More
Image of Jonathan Lynch

Jonathan Lynch

Animals, including humans, have stable relationships with communities of microorganisms collectively referred to as the microbiota. These communities profoundly influence the biology of their hosts, impacting host features such as immune function, metabolism, and even so-called “higher” traits such...

Read More
Image of Michael Piacentino

Piacentino, Michael

Epithelial-to-mesenchymal transition (EMT) is a cellular lifestyle change that produces highly invasive cells that can migrate long distances in the body. These processes are critical for normal embryonic development but are often reactivated in disease states such as cancer...

Read More
Photo of Bindu Paul

Bindu Paul

Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...

Read More

Svetlana Lutsenko

Copper plays an essential role in human physiology. It serves as a cofactor to key metabolic enzymes that are required for respiration, neurotransmitter biosynthesis, detoxification of radicals, blood clotting, connective tissue formation, and many others processes. Through currently unknown...

Read More

Peter Espenshade

Our laboratory’s research focuses on understanding (1) how cells measure levels of available nutrients and (2) how cells adapt to changes in nutrient supply to control metabolic homeostasis. Our studies have primarily centered on changes in cholesterol and oxygen...

Read More

Andrew Feinberg

Understanding how the information in the genome is utilized is one of the central questions in modern biology. It has become clear that a critical level of gene regulation occurs through the chemical modification of both the DNA itself...

Read More
Image of J Marie Hardwick

J. Marie Hardwick

Our laboratory studies the basic molecular mechanisms of programmed cell death, an evolutionarily conserved process to eliminate cells. Because these pathways normally contribute to the millions of cell deaths that occur per day per individual, defects in cell death...

Read More

G. William Wong

Our lab seeks to understand mechanisms employed by cells and tissues to maintain metabolic homeostasis. We are broadly interested in how secreted hormones control various aspects of sugar and fat metabolism. Our current efforts centered on addressing how fat...

Read More
Photo of Natasha Zachara

Natasha Zachara

The overarching goal of our laboratory is to characterize a novel endogenous protective signaling network of mammalian cells and tissues to provide insight into the molecular mechanisms underlying disease and to highlight novel therapeutic avenues. Cells and tissues respond...

Read More