Using nucleic acid chemistry and biology to create safer cancer drugs and tunable imaging agents for cancer detection. Traditionally antibodies have been considered the gold standard of targeting ligands, able to specifically target desired cellular targets with high affinity....
Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...
Our laboratory studies the basic molecular mechanisms of programmed cell death, an evolutionarily conserved process to eliminate cells. Because these pathways normally contribute to the millions of cell deaths that occur per day per individual, defects in cell death...
Fueled by the fast-growing DNA sequence information, proteomics-the large-scale analysis of proteins-has become one of the most important disciplines to characterize protein activities and provide insight into functional network between protein molecules in a high-throughput format. More and more...
The research group is a laboratory focused on medicinal chemistry, primarily addressing diseases of neurodevelopment such as schizophrenia. Biological activity and structure-based drug design are used to drive chemistry target selection, and we are developing synthetic methods to efficiently prepare...
Our work bridges from biochemical to preclinical translational studies to harness the power of glycobiology for therapeutic benefits. All cells are endowed with a diverse coat of glycans, their “glycocalyx,” which represents the face of the cell to the...
The central theme of our research is chemotherapy of malaria and African sleeping sickness. On a molecular basis, we are interested in understanding the mechanism of action for existing agents, and in identifying vulnerable targets for much-needed new chemotherapy....
Epstein-Barr virus and Kaposi’s sarcoma herpesvirus are found in association with a variety of cancers. Our laboratory studies are aimed at better defining the role(s) of the virus in the pathogenesis of these diseases and the development of strategies...
We take chemical-biology approaches to pursue new anti-infective strategies. Since 2005, my group has developed approaches to block the indispensable MEP pathway for isoprenoid biosynthesis and vitamin biosynthesis in pathogens. DXP synthase has emerged from this work as a...