Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...
Research in my laboratory is focused on understanding the molecular mechanisms of multi-subunit assemblies involved in synaptic communication. We are particularly interested in elucidating the structural thermodynamics that govern subunit assembly, ligand binding, and allosteric control of neurotransmitter receptors....
Copper plays an essential role in human physiology. It serves as a cofactor to key metabolic enzymes that are required for respiration, neurotransmitter biosynthesis, detoxification of radicals, blood clotting, connective tissue formation, and many others processes. Through currently unknown...
The goal of my research program is to answer a fundamental biological question: how is the genome properly interpreted to coordinate the diversity of cell types observed during neuronal development? We are focused on the acquisition of specific cellular...
The research group is a laboratory focused on medicinal chemistry, primarily addressing diseases of neurodevelopment such as schizophrenia. Biological activity and structure-based drug design are used to drive chemistry target selection, and we are developing synthetic methods to efficiently prepare...
Our laboratory studies the molecular and cellular mechanisms underlying the perception of pain under healthy conditions and in the setting of pathology. Towards this goal, we utilize a wide spectrum of approaches including behavioral analysis, in vivo and in...
Phospholipids are the building blocks of biological membranes. Membranes leverage the amphipathic chemistry of lipids to form bilayers that encapsulate a cell and its multitude of organelles. Such compartmentalization has enabled cells to separate biochemical pathways, establish specialized functions...
My lab studies the cellular and molecular basis of synaptic transmission and plasticity. Neuronal signaling events at synapses determine circuit responses and result in specific behavioral outputs. This signaling is dynamic – modulated by synapse activity history and perceived...
The Rao laboratory studies the role of novel ion transporters in human health and disease. One project focuses on the calcium signaling in breast cancer. We showed that an isoform of the secretory pathway Ca2+-ATPase, SPCA2, interacts with ion...
We study fundamental cellular processes relevant to human disease. A major research focus in our laboratory is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), which results from a mutation in the gene encoding the nuclear scaffold protein lamin...
