Our research is focused on understanding how neuronal connectivity is established during development. Our work investigates the function of extrinsic guidance cues and their receptors on axonal guidance, dendritic morphology, and synapse formation and function. For several years we...
Chemotaxis plays a key role in immune response, wound healing, angiogenesis, and embryogenesis as well as mediating cancer metastasis. Research in Dictyostelium discoideum has shown that chemoattractants are sensed by GPCRs and rapidly trigger a complex network of signaling...
Multi-cellular living organisms grow from single cells into multicellular, complex systems composed of highly diverse cell-types organized into tissues, which in turn form organs and organ systems. To organize and maintain this complex architecture, the organism must undergo constant...
Our laboratory is interested in the molecular mechanisms and physiological roles of mitochondrial fusion. Mitochondria are highly dynamic and control their morphology by a balance of fusion and fission. The regulation of membrane fusion and fission generates a striking...
Our lab studies gene regulation in germ cells, with a focus on “RNA granules” which are phase-separated compartments rich in RNA and proteins. We have identified a family of intrinsically-disordered proteins that form gel-like assemblies that sequester RNA (RNA...
We study the structure and function of the cell nucleus, ‘mothership’ of the human genome. We seek to understand how nuclear envelope (NE) membrane proteins interact with nuclear intermediate filament (‘lamina’) networks and other partners to collectively establish, protect...
The research in the Wolfgang laboratory utilizes biochemistry and molecular genetics to understand the molecular mechanisms used to sense and respond to nutritional/metabolic cues under various physiological and pathophysiological circumstances. They are particularly interested in deciphering the roles of...
The current research focus of my laboratory is investigating the olfactory system of Anopheles mosquitoes. We have developed new strains of Anopheles mosquitoes, utilizing the Q-system we originally developed for use in Drosophila, to explore how living Anopheles mosquitoes...