Image of Michael Piacentino

Piacentino, Michael

Epithelial-to-mesenchymal transition (EMT) is a cellular lifestyle change that produces highly invasive cells that can migrate long distances in the body. These processes are critical for normal embryonic development but are often reactivated in disease states such as cancer...

Read More
Photo of Bindu Paul

Bindu Paul

Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...

Read More

Svetlana Lutsenko

Copper plays an essential role in human physiology. It serves as a cofactor to key metabolic enzymes that are required for respiration, neurotransmitter biosynthesis, detoxification of radicals, blood clotting, connective tissue formation, and many others processes. Through currently unknown...

Read More

Peter Espenshade

Our laboratory’s research focuses on understanding (1) how cells measure levels of available nutrients and (2) how cells adapt to changes in nutrient supply to control metabolic homeostasis. Our studies have primarily centered on changes in cholesterol and oxygen...

Read More
Image of Shigeki Watanabe

Shigeki Watanabe

My lab studies the cellular and molecular basis of synaptic transmission and plasticity. Neuronal signaling events at synapses determine circuit responses and result in specific behavioral outputs. This signaling is dynamic – modulated by synapse activity history and perceived...

Read More

Edward Twomey

Research topics: Cryo-electron microscopy, membrane proteins, glutamate receptors, protein homeostasis We are interested in the structural and biochemical underpinnings of neurotransmission and neurodegeneration, as well as the homeostasis of the proteins contributing to these processes. Primarily, we will be...

Read More
Photo of Jian Liu

Jian Liu

The central theme of my research is to understand how mechanical actions feedback to biochemical pathways in cellular processes, and how such mechanochemical crosstalk among key cellular players governs spatial-temporal regulation and shapes cell functions. I confront these challenges...

Read More