Using nucleic acid chemistry and biology to create safer cancer drugs and tunable imaging agents for cancer detection. Traditionally antibodies have been considered the gold standard of targeting ligands, able to specifically target desired cellular targets with high affinity....
The evolution of multicellularity occurred hand in hand with the diversification of cell types with disparate morphologies and functions. This segregation of function across different cell types enabled astounding animal complexity; but at the same time, extreme specializations of...
Understanding the brain using evolution, viruses, and barcode sequencing. Our research aims to understand the structure and function of the brain. To do so, we take a comparative approach and develop molecular, viral, and sequencing technologies to measure neuronal...
Redox regulation plays a central role in signal transduction processes operating in the brain. Aberrant redox signaling is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and various Ataxias. It...
Research in my laboratory is focused on understanding the molecular mechanisms of multi-subunit assemblies involved in synaptic communication. We are particularly interested in elucidating the structural thermodynamics that govern subunit assembly, ligand binding, and allosteric control of neurotransmitter receptors....
Copper plays an essential role in human physiology. It serves as a cofactor to key metabolic enzymes that are required for respiration, neurotransmitter biosynthesis, detoxification of radicals, blood clotting, connective tissue formation, and many others processes. Through currently unknown...
Our laboratory studies the basic molecular mechanisms of programmed cell death, an evolutionarily conserved process to eliminate cells. Because these pathways normally contribute to the millions of cell deaths that occur per day per individual, defects in cell death...
Mechanisms of gradient sensing and chemotaxis are conserved in mammalian leukocytes and Dictyostelium amoebae. Both cells use G protein linked signaling pathways. PH domains specific for PtdIns(3,4)P2 and PtdIns(3,4,5)P3 bind to the membrane at the leading edge of the...
Research Focus Our research focuses on “synthetic cell biology” to dissect and reconstitute intricate signaling networks. In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as a symmetry breaking process), as well as spatio-temporally dynamic...