My laboratory has taken a multidisciplinary approach to understand the cellular and molecular mechanisms of different types of somatosensations including pain and itch, which are initiated and mediated by primary sensory neurons in dorsal root ganglia (DRG). We identified...
Our laboratory’s research focuses on understanding (1) how cells measure levels of available nutrients and (2) how cells adapt to changes in nutrient supply to control metabolic homeostasis. Our studies have primarily centered on changes in cholesterol and oxygen...
Background and Summary: Epithelial cells in a tissue live a crowded life connected to, and interacting with, other cell types, the extracellular matrix, and diverse signaling molecules. A fundamental question in biology is: how do the constituent cells of an...
Understanding how the information in the genome is utilized is one of the central questions in modern biology. It has become clear that a critical level of gene regulation occurs through the chemical modification of both the DNA itself...
Non-ribosomal peptide synthetases (NRPSs) are large enzymatic systems responsible for the biosynthesis of a wealth of secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. To synthesize all of...
Antigen-specific and islet-targeted immunotherapies for type-1 diabetes Cell-surface autoantigens of pancreatic beta-cells are molecular attractants for autoreactive immune cells and thus therapeutic entry points to protect beta-cells from autoimmune attack that results in type-1 diabetes (T1D). Zinc transporter-8 (ZnT8)...
The Fukunaga lab is broadly interested in RNA biology. More specifically, the Fukunaga lab investigates the mechanism and biology of post-transcriptional gene regulation controlled by small silencing RNAs and RNA-binding proteins. Our research projects will answer fundamental biological questions...
The goal of my research program is to answer a fundamental biological question: how is the genome properly interpreted to coordinate the diversity of cell types observed during neuronal development? We are focused on the acquisition of specific cellular...
The growing crisis in antibiotic resistance necessitates a complete molecular understanding of the mechanisms and regulation of bacterial growth and replication to inform development of new drugs. Our laboratory aims to elucidate the mechanisms bacteria use to grow and...
Animal cells secrete small vesicles (~50-250 nm diameter) that have the same topology as the cell. These vesicles, known as exosomes and microvesicles (EMVs), can be taken up by neighboring cells, completing a pathway of intercellular vesicle traffic. Our...