The research group is a laboratory focused on medicinal chemistry, primarily addressing diseases of neurodevelopment such as schizophrenia. Biological activity and structure-based drug design are used to drive chemistry target selection, and we are developing synthetic methods to efficiently prepare...
Our laboratory is interested in the area of sensory transduction: specifically visual and olfactory transductions, which are the processes by which the senses of vision and olfaction are initiated. These two processes have interesting similarities and differences. Vision can...
The research in the Wolfgang laboratory utilizes biochemistry and molecular genetics to understand the molecular mechanisms used to sense and respond to nutritional/metabolic cues under various physiological and pathophysiological circumstances. They are particularly interested in deciphering the roles of...
My lab studies the cellular and molecular basis of synaptic transmission and plasticity. Neuronal signaling events at synapses determine circuit responses and result in specific behavioral outputs. This signaling is dynamic – modulated by synapse activity history and perceived...
The nervous system consists of a great variety of neurons and glia that together form the components and circuits necessary for nervous system function. Neuronal and glial diversity is generated through a series of highly orchestrated events that control...
Our work bridges from biochemical to preclinical translational studies to harness the power of glycobiology for therapeutic benefits. All cells are endowed with a diverse coat of glycans, their “glycocalyx,” which represents the face of the cell to the...
The current research focus of my laboratory is investigating the olfactory system of Anopheles mosquitoes. We have developed new strains of Anopheles mosquitoes, utilizing the Q-system we originally developed for use in Drosophila, to explore how living Anopheles mosquitoes...
The Rao laboratory studies the role of novel ion transporters in human health and disease. One project focuses on the calcium signaling in breast cancer. We showed that an isoform of the secretory pathway Ca2+-ATPase, SPCA2, interacts with ion...
Synapses are specialized cell-cell junctions which connect individual neurons together and are the sites of transmission of information between neurons. While the molecular mechanisms which promote synapse formation have been a subject of intense investigation, little is known about the...